Guidelines and instructions on security for electronic data interchange (EDI)

English translation 2011-06-23
based on Swedish version 2.0

This is an unofficial translation. In case of any discrepancies between the Swedish and English versions, the Swedish version shall prevail.
Contents

1 Introduction ... 5
1.1 Swedish Customs’ security concept for EDI ... 5
1.2 Purpose, scope and use of this document .. 6
1.3 Legal basis ... 6
1.4 Responsibility for the submission of information .. 7
1.5 Categories of electronic documents ... 7
1.6 Terminology used .. 8
2 Brief description of the security concept ... 9
2.1 Description of the concept .. 9
2.2 Electronic signature ... 11
2.3 PKI .. 12
2.4 Signature certificates ... 12
2.5 Certificate Authority (CA) .. 12
3 Appointing a contact person for signature certificates .. 14
4 Order, delivery and blocking of signature certificates ... 15
4.1 Order and delivery .. 15
4.2 Creating a CSR file ... 17
4.3 Revocation .. 18
5 Requirements on the company’s customs management system 19
5.1 Management of signature key ... 19
5.2 User identification and access control ... 19
5.3 Approving and signing the data interchange ... 20
5.4 Signature verification at reception ... 21
6 Security implementation for the EDIFACT format ... 22
6.1 The Signing Process ... 22
6.2 Algorithms for checksum and electronic signature ... 24
6.3 Important to remember when using binary numbers .. 24
7 Appendix A: Certificates – a technical description ... 26
7.1 Certificate Hierarchy .. 26
7.2 Root certificate .. 27
7.3 CA certificate ... 28
7.4 Signature certificate ... 29
7.5 authorityKeyId.. .. 30
8 Appendix B: CSR file – description and examples .. 31
8.1 OpenSSL .. 32
8.2 Windows cer.. .. 35
8.3 Java .. 36
9 Appendix C: Hexadecimal and Base64 encoding .. 37
9.1 Hexadecimal encoding ... 37
9.2 Base64 encoding ... 37
Updates from the Swedish version 1.0 to 2.0 of the document

<table>
<thead>
<tr>
<th>SECTIONS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1.5</td>
<td>Text of the Category 2 has been updated.</td>
</tr>
<tr>
<td>Section 4.1</td>
<td>Editing and clarifications.</td>
</tr>
<tr>
<td>Section 4.2</td>
<td>A footnote has been added to clarify the certificate field “serialNumber”.</td>
</tr>
<tr>
<td>Section 5.1</td>
<td>A new paragraph has been added at the end of requirement 1. The footnote on two-factor authentication has been clarified.</td>
</tr>
<tr>
<td>Section 6</td>
<td>Section 6 has been edited and clarified, for instance regarding key length, reference to RFC 3447 and subfield keyIdentifier to authorityKeyIdentifier.</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Appendix A has been supplemented with description, format and content of the certificates.</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Appendix B has been supplemented with examples of how a CSR file can be created in some common computing environments.</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Swedish Customs’ security concept for EDI

Secure electronic data interchange (EDI)\(^1\) means that the issuer of the information can be secured identified, that the information is protected against change, and that it is transferred by means of secure communication\(^2\).

For electronic data interchange, Swedish Customs has since the early 1990s used a security concept based on the SÄKdata seal method (subsequently called Nexus Electronic Seal) to substitute handwritten signatures. The use of that security concept is also governed by a set of rules containing guidelines and instructions\(^3\).

As from 2010, Swedish Customs uses a PKI-based security concept for EDI communication. The PKI-based security concept for EDI, hereinafter called ‘the security concept’, will be implemented gradually, and to start with the old concept can be used alongside the new one.

These are a few characteristic distinctions between the two solutions:

<table>
<thead>
<tr>
<th>PKI-based solution</th>
<th>Previous solution (Nexus Electronic Seal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data is locked by an electronic signature created through PKI-based asymmetric cryptography, where only the person issuing the information has access to the private key.</td>
<td>Data is locked through a seal(^4) created through symmetric cryptography, where the sender and the recipient both have access to the secret key.</td>
</tr>
<tr>
<td>Method based on common standards.</td>
<td>Proprietary method.</td>
</tr>
<tr>
<td>Within the limits of Swedish Customs’ guidelines and instructions, the companies can choose their own method to identify users in their system for submission of information.</td>
<td>Swedish Customs makes specific demands regarding the method used to uniquely identify the users in the company’s system for submission of information.</td>
</tr>
<tr>
<td>A company key is used to create a signature.</td>
<td>An individual key is used to create a seal.</td>
</tr>
<tr>
<td>This enables Swedish Customs to uniquely identify the company by the electronic signature, but not the individual user within the company. However, for certain document categories, the company must be able to provide information on the identity of the individual user associated with the message.</td>
<td>This enables Swedish Customs to identify the specific user directly from the seal.</td>
</tr>
</tbody>
</table>

\(1\) In this document, the term ‘electronic data interchange’ (EDI) refers to system-to-system exchange of information.

\(2\) Communications protocols and security regarding such protocols are outside the scope of Swedish Customs’ security concept for EDI and is therefore not covered by this document.

\(3\) See i.a. Säkerhetsfrågor i Tullverkets EDI-system (Security Issues in Swedish Customs’ EDI system), 2006-10-04, version 1.0.

\(4\) Historically, the notion seal has been used to describe locking data through a symmetric encryption/decryption key, where the sender and the recipient both have access to the secret key, while the notion signature is used to describe locking data in the PKI-based solution.
1.2 Purpose, scope and use of this document

This document is aimed at system suppliers providing standard systems for EDI communication with Swedish Customs, companies developing equivalent systems on their own, and companies choosing to buy standard systems from a system supplier. When choosing and implementing a system, the company submitting the information is the one responsible to meet the conditions set up by Swedish Customs.

The document covers EDI-based system-to-system data interchange with Swedish Customs, but does not include user-to-system interchange, for example via a web interface. Examples of common EDI communication are customs import and export declarations.

The document describes the use of the PKI-based security concept for EDI, and focuses on security and technical issues. It further includes requirements for the company’s implementation of their customs management system, to ensure the protection of the electronic documents transferred as well as a reliable identification of the company and – when applicable – a reliable identification of authorised users.

The document includes technology-oriented instructions for the technical implementation, as well as guidelines aiming to achieve a reliable implementation of the security concept. The technology-oriented instructions are divided into a main part applicable regardless of the format, and a part with more specific instructions for the different formats, starting with EDIFACT.

The choice of communications protocol and the security methods incorporated, cryptography etc., is also important but is not covered in detail in this document.

1.3 Legal basis

In accordance with the Community Customs Code, customs declarations in writing shall be signed. In accordance with the Code’s implementing provisions, the Customs authorities shall determine the rules for replacement of the handwritten signature in electronic declarations. This shall include i.a. measures for checking the source of data and for protecting data against the risk of unauthorised access, loss, alteration or destruction. Furthermore, the Swedish Customs Act states that it must be possible to verify the contents and the issuer of an electronic document through a certain technical procedure.

According to the Modernised Customs Code, customs declarations made using an electronic data-processing technique shall contain an electronic signature or other means of authentication.

5 Article 62 of the Commission Regulation (EEC) 2913/92
6 Article 4b of the Commission Regulation (EEC) 2454/93
7 Swedish Customs Act (SFS 2000:1281), chapter 2, section 2
In the future, other electronic documents governed by other legislation may occur, which may lead to other requirements on electronic signatures.

1.4 Responsibility for the submission of information

If the information is submitted by a legal person, the declaration shall be signed by an authorised signatory or a person to whom the signing authority has been delegated. Generally, the power to sign on behalf of the company is held by the board of directors. The Chief Executive has the signing authority in the day-to-day administration, in which the lodging of customs declarations should be included. In addition, a person can be delegated the signing authority for specific purposes, for example to lodge customs declarations. The signing authority can be delegated in writing or orally. It can also be granted implicitly to people holding a certain position in the company.

Legal representatives of a business have a direct responsibility for the business and are fully responsible even for their lack of action. This responsibility applies as long as the person holds the position as a representative. Under certain circumstances, the delegation of working tasks and powers of authority can lead to responsibility for the person to whom the tasks or powers are delegated. In such cases, the responsibility is determined based on the circumstances in the specific case.

1.5 Categories of electronic documents

In the security concept, two categories of electronic documents are defined for EDI communication between a company and Swedish Customs. Each EDI authorisation contains information on the category in which a specific electronic document falls.

<table>
<thead>
<tr>
<th>Category 1 – no requirement for the identification of a natural person</th>
</tr>
</thead>
<tbody>
<tr>
<td>This refers to electronic documents not covered by requirements that an authorised user approves the data before they are submitted, and where the sender does not have to identify an authorised natural person – neither when the information is submitted, nor subsequently.</td>
</tr>
<tr>
<td>Thus, this category of electronic documents can be created and submitted automatically in a computerised system.</td>
</tr>
</tbody>
</table>
1.6 Terminology used

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised signatory</td>
</tr>
<tr>
<td>Authorised user</td>
</tr>
<tr>
<td>Contact person for signature certificates</td>
</tr>
<tr>
<td>Electronic document</td>
</tr>
</tbody>
</table>
2 Brief description of the security concept

From the PKI-based security concept follows that the exchange of information between Swedish Customs and the companies is always made by signed electronic documents. For the flow of information from the company to Swedish Customs a signature certificate issued for the company is used to create an electronic signature. For information flow in the reverse direction a signature certificate issued for Swedish Customs is used.

Traditionally, secure EDI communication requires that:
1. the electronic document cannot be changed without this being detected
2. no one shall be able to send the electronic document in someone else’s name – deliberately or by mistake – without this being detected
3. the sender shall not be able to deny having produced and sent the electronic document
4. the recipient shall not be able to deny having received the electronic document
5. no unauthorised person shall be able to read the electronic document.

Items 1-3 are ensured by the PKI-based security concept, item 4 by the requirement for signed receipt messages, and item 5 by the requirement for encrypted communication.

In addition to these general EDI requirements, Swedish Customs requires the possibility to identify a natural person for electronic documents of Category 2.

2.1 Description of the concept

The example below illustrates some important points of the security concept for data interchange of electronic documents of Category 2. For documents of Category 1 there are some simplifications since no identification of a natural person is needed.

In the example, the company wants to send import or export declarations electronically to Customs and has applied for authorisation to do so. However, to start the electronic submission of information, they need a signature certificate.

The process can be divided into an administrative part, covering the management of signature certificates, and an operational part, covering the use of signature certificates in the data interchange with Customs.
2.1.1 Administrative management of signature certificates

To start the electronic submission of information, the company needs access to a signature certificate, which can be obtained by sending a notification to Swedish Customs.

1) In the notification, one or more contact persons are appointed for future contacts with Swedish Customs regarding signature certificates.

2) The contact person orders signature certificates from the Certificate authority at Swedish Customs.

3) The contact person initiates that a private (secret) key is generated by the company and is linked to the certificate (see Section 4).

4) The private key is stored in a secure way in the company’s IT system.

To provide reliability, the total security of the company’s customs management system must be sufficient. This includes i.a. a secure handling and storage of private keys linked to the signature certificates.
It is also important that the system offers traceability through log files (Category 2) so that the user signing an electronic document always can be identified with sufficient reliability (see Section 5).

2.1.2 The use of signature certificates in the data interchange

The way information is submitted differs between electronic documents of Category 1, without requirements for the identification of a natural person, and Category 2, with such requirements.

Requirements for electronic documents of Category 2:

a) initial identification of the person

b) check, based on the identity, that the person is authorised

c) the electronic document must be approved by the authorised user before it is signed.

Requirements for both categories of electronic documents:

d) the electronic document is signed using the company’s signature certificate

e) the signature is verified when received by Swedish Customs.

When Swedish Customs send a signed electronic document to the company, the signature must be verified by the company.

2.2 Electronic signature

The significance of a handwritten signature varies depending on the document that is signed. At its simplest form, the signature only indicates that the person has read a document. In other contexts, for example in a real estate purchase contract, the significance of the signature is considerably higher with regard to non-repudiation. Non-repudiation means that the person cannot deny having approved a transaction etc. by signing it.

The electronic signature is the electronic-world equivalent of a handwritten signature. Like the handwritten signature, the electronic equivalent can mean different things depending on the demands put on the electronic document. An electronic signature can also be called a digital signature.

Characteristic of the signature used in Swedish Customs PKI-based security concept is that it is only linked to the company. In other words, it has no direct link to the person approving the data. However, for electronic documents of Category 2, the company must always be able to account for the natural person having approved the data and, when Customs so demand, provide information on the identity of this person.
2.3 PKI

The acronym PKI in Swedish Customs PKI-based security concept, means Public Key Infrastructure. A basic feature of a PKI-based security concept is that, to verify the signature, the receiving party does not need access to the key that the sender uses to sign the electronic document. To handle this, each party participating in the data interchange has a unique pair of keys, with a *private key* that must be kept secret and a *public key* that can be distributed to all parties.

There is a strong mathematic relation between the private key and the public key. This relation enables the recipient of an electronic document to use the public key to verify whether the signature of the electronic document is created by use of the corresponding private key.

2.4 Signature certificates

The meaning of ‘certificate’ in this context is defined by the international standard X.509. The certificate links the public key of the company (see 2.3) to the company name and other identification data. The connection is made by the certificate authority (see 2.5). To ensure that the connection is not subsequently changed, the certificate authority locks the certificate with a signature.

When the company sends a signed electronic document, Swedish Customs can use the public key of the company to verify that the signature is created by use of the corresponding private (secret) key. If this is the case, Swedish Customs can use the public key of the company and the linked identification data in the certificate for reliable identification of the company that produced the electronic document. This enables non-repudiation for data interchange where this is required. In the same way, the company can verify electronic documents sent from Customs by verifying Customs’ signature.

A signature certificate used for data interchange between a company and Swedish Customs is not linked to an individual person. The signature certificate is only linked to the company and is thus an organisation-oriented certificate.

2.5 Certificate Authority (CA)

Initially, Swedish Customs will be the certificate authority (CA) of the PKI-based security concept. One reason for this is that currently, the market cannot meet the needs to provide certificates to all companies with required functionality. The certificates provided by Swedish Customs are only intended for the signing of electronic documents in the data interchange with Customs.
As mentioned in Section 2.4 above, an important task for the certificate authority is to link the public key of the company to the company name and other identification data and to lock this information with a signature.

To archive reliability, the certificate authority must also ensure that the information in the certificate is correct. In the Swedish Customs PKI-based security concept for EDI, the company provides the certificate authority with this information. However, the certificate authority must ensure that the information can be traced to an authorised person (authorised signatory) and that it reaches the certificate authority unaltered together with information on the public key of the company.
3 Appointing a contact person for signature certificates

A company intending to use the PKI-based security concept needs access to signature certificates to sign electronic documents before sending them to Customs. By notifying Swedish Customs, the company can appoint one or more contact persons within the company and authorise them to order and administer signature certificates. The ordering of signature certificates is covered by Section 4.

To obtain a signature certificate, the company must be authorised to submit certain types of electronic information to Customs, or apply for such authorisation.

A notification form is available for download from the website of Swedish Customs. The notification shall include information on the contact persons authorised to order and administer signature certificates. You can also use the form to add new contact persons or remove previously reported contact persons.

The form shall be signed by an authorised signatory or a person to whom the signing authority has been delegated. Customs may verify the information against the registers of the Swedish Companies Registration Office or equivalent foreign registers, or by other means ensure that the signatory is entitled to sign on behalf of the company.

After having handled the application, Swedish Customs sends an acknowledgement receipt to the company, confirming that the notification has been received and handled.
4 Order, delivery and blocking of signature certificates

The certificates provided by Swedish Customs are only intended for the signing of electronic documents in the data interchange with Customs.

The signature certificate is valid for a limited period of time. It is the responsibility of the company to order a new certificate in good time before a certificate expires. Overlapping periods of validity is permitted and recommended. The procedure described below is applicable both to initial orders of certificates and to renewals.

4.1 Order and delivery

Step 1
The appointed contact person at the company generates a key pair, a private and a public key, using appropriate software. The private key must be handled in accordance with the security requirements listed in Section 5.

In connection with the generation of the keys, a CSR (Certificate Signing Request) file is also generated. This file includes the public key and other necessary data.
Step 2
The contact person at the company shall copy the entire plain text from the CSR file into an email message and send it to edi.certifikat@tullverket.se. Company name and EORI number shall be specified in the email subject line.

The content of the CSR file in plain text shall be copied into a document with the title “Ordering of signature certificate” and the company name and EORI-number shall be specified. A printout of the document shall be signed by the contact person (including name spelled out) and sent by postal mail to:

Swedish Customs, IT department
EDI Certificate
Aurorum 3
SE-977 75 Luleå
SWEDEN

The signed letter is necessary to legally associate the contact person to the issued signature certificate.

Step 3
Swedish Customs checks the order against previous notification of the use of signature certificates. The receipt of the order is confirmed via email to the contact person by use of the email address previously provided in the notification. In the receipt message Swedish Customs provides a code that the company shall use to confirm the order.

Step 4
The company contact person referred to in the order, confirms the order in an email by including the code received from Customs.

Step 5
When Swedish Customs has received an accurate order confirmation from the company contact person, Customs issues and signs an X.509 certificate valid 14 months from the time it is issued, based on the information received in the CSR file. The certificate is stored at the CA at Swedish Customs and sent by email to the company contact person by use of the email address provided in the notification.

Step 6
The company installs the received certificate and their private key using a process that meets the requirements listed in Section 5.
4.2 Creating a CSR file

When placing an order for a signature certificate, as described in the previous section, the company shall provide Swedish Customs with correct identification information through a “Certificate Signing Request” stored in a CSR file. The creation of a CSR file follows common standard (RFC 2986) and is implemented in development tools for various computing environments such as Windows, Java etc. Based on the CSR file, Customs issues the signature certificate to the company. The signature certificate is stored at Swedish Customs and sent to the company.

When creating the CSR file, the company also generates their public and private keys. The signature keys must be generated in a way that protects the private signature key against unauthorised access (see Section 5).

The customs management system at the company should provide a user-friendly interface for creating and sending CSR files to enable the contact person to handle this task without having deep technological knowledge.

The CSR file shall contain the following information regarding the identity of the company (subject):

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Maximum length</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>countryName</td>
<td>2</td>
<td>Country Code for the company</td>
</tr>
<tr>
<td>organizationName</td>
<td>64</td>
<td>Company Name</td>
</tr>
<tr>
<td>organizationalUnitName</td>
<td>64</td>
<td>Unit within the company (optional)</td>
</tr>
<tr>
<td>serialNumber</td>
<td>9</td>
<td>The EORI number of the company</td>
</tr>
<tr>
<td>commonName</td>
<td>64</td>
<td>Company name in a shorter version (optional)</td>
</tr>
</tbody>
</table>

In addition to these data, the public key of the company is included. See Appendix A and B for further information and some examples.

Note that the 'serialNumber' in the table above does not refer to the certificate's serial number but is a part of the description of the organization for which the certificate is issued (the subject). See RFC 5280, Section 4.1.2.4, for further description of 'serialNumber'. In specification X.520 is 'serialNumber' defined by object identifier 2.5.4.5 and is of type "Printable String" (unlike the certificate's serial number which is of type "Integer").
4.3 Revocation

The signature certificates can be revoked.

4.3.1 Revocation initiated by the company

Should the company know or suspect that someone who is not an authorised user has access to the company’s private key, a revocation of the certificate must be requested without delay.

A revocation request can be made by
- email
- fax
- telephone
- letter

Contact information to Swedish Customs can be found on our website www.tullverket.se. Before a certificate is revoked, Customs contacts the company to verify the revocation request.

4.3.2 Revocation initiated by Swedish Customs

Swedish Customs has the right to revoke a certificate issued by Customs to a company.

The motive for revocation may be e.g. suspected inaccuracies or the fact that other authorisations, mandatory for electronic data interchange, is withdrawn.

4.3.3 Publication of revoked certificates

Swedish Customs will publish lists of revoked certificates issued by Swedish Customs. The lists will include both certificates issued to Customs and to companies.
5 Requirements on the company’s customs management system

The company shall use an implementation of the PKI-based security concept for their customs management system to ensure a high level of total security. This includes i.a. that the system shall meet the requirements listed below. The requirements are applicable to the submission of information to Customs as well as the reception of information from Customs.

The requirements set out for the customs management system vary according to the category of the documents submitted. In the boxes below, the symbols (Category 1) and (Category 2) are used to indicate to which category/categories the specific requirement applies. The categories are defined in Section 1.5.

5.1 Management of signature key

The signature of the electronic document is the basis for document security as well as for a reliable identification of the company.

<table>
<thead>
<tr>
<th>Requirement 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>The signature keys must be generated and used in a way that protects the private signature key against unauthorised access. New signature keys must be generated for each new certificate and created by parameters that meet requirements on the quality of the keys. Key length for RSA keys shall be in accordance with Appendix A.</td>
</tr>
</tbody>
</table>

5.2 User identification and access control

As long as the Customs’ requirements are met, the company can choose their own secure solution for identification of users approving data to be signed. Identification is a prerequisite for access control as well as for the possibility to trace the user at a later stage.

Identification

<table>
<thead>
<tr>
<th>Requirement 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A user approving data must be identified in the company's customs management system with a high level of security, which requires at least a two-factor solution.</td>
</tr>
</tbody>
</table>

10 Factors to choose between are: Something you know (e.g. a password), something you own (e.g. a card or a security token), something you are (e.g. a fingerprint). "Something you own" refers to something which is difficult to copy and that only the user disposes and carries with him. Magnetic cards, IP addresses and reproducible list of one-time password does not meet this requirement. A two-factor solution means that you choose two different factors.
Guidelines and instructions on security for electronic data interchange (EDI)

Requirement 3
To guarantee the identity of the user approving data to be signed, a new identification (in accordance with Requirement 2) has to be carried out after a certain time of inactivity. This time of inactivity should be relatively short to maintain a high level of security.

Requirement 4
After the submission, the company shall provide information of the identity of the authorised user who has approved the electronic document to be signed, if Customs so require. The EDI authorisation includes information on how long after the submission of the document this information must be accessible.

Access control

Requirement 5
The customs management system must be covered by an access control system, to ensure that only authorised users can approve data to be signed.

Requirement 6
Only specifically appointed officials shall have the power to authorise access to the system.

5.3 Approving and signing the data interchange

Prior to the submission to Customs, the user approves the data in the electronic document. As a result of the approval, a signature should be added to the transaction, locking the information and enabling the recipient to securely identify the sender. The document can either be signed directly when the data is approved or at a later stage.

Requirement 7
Prior to the approval of the electronic document, the user must be able to review all the information in a user-friendly way.

Requirement 8
The customs management system shall ensure that the information that is to be sent to Customs cannot be changed by other users while the user reviews the information before approving it.

Requirement 9
The approval of the data must require a deliberate action from the user (such as pressing a key) and the user must be made aware that this action equals a handwritten signature.

Requirement 10
If the signature is not created directly when the user approves the information, the information must be protected against change until the document is signed.
5.4 Signature verification at reception

Generally, all electronic documents from Swedish Customs contain a signature. At the reception of these documents, the company must verify this signature.

<table>
<thead>
<tr>
<th>Requirement 11</th>
<th>In accordance with the technical specification for the type of electronic document, an acknowledgment receipt must be sent to Swedish Customs for all electronic documents received from Customs, to confirm that they have been received.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement 12</td>
<td>The recipient shall verify the signature of all the electronic documents where a signature is mandatory according to the technical specification for the type of electronic document.</td>
</tr>
<tr>
<td>Requirement 13</td>
<td>If the signature is erroneous or missing, when it is mandatory according to the technical specification for the type of electronic document, an error message must be returned.</td>
</tr>
</tbody>
</table>
6 Security implementation for the EDIFACT format

For the EDIFACT format, the AUTACK message is used to package signature-related information.

The \textit{SCTS-SC} technical specification, which is available at Swedish Customs website, describes more in detail how the signature-related information is handled and stored in the AUTACK message.

Since the security concept is based on commonly supported standard security algorithms, all computer environments generally offer good support for implementation of electronic signatures. However, the implementation can differ between different development tools.

6.1 The Signing Process

6.1.1 Creating a signature for an electronic document (to Swedish Customs)

Before the signature process starts, the electronic document must be converted into an EDIFACT message.

The EDIFACT interchange consists of EDIFACT messages for the electronic documents included and an AUTACK message for the security information.

Firstly, a checksum is calculated based on the EDIFACT representation of the electronic document. The checksum is calculated for the whole message including all information, i.e. also EDIFACT control data like separator characters and segment name, by use of an algorithm in accordance with Section 6.2, see also the SCTS-SC technical specification that can be found on the website of Swedish Customs.

Next step is encryption of the checksum11 through an algorithm for electronic signatures in accordance with Section 6.2. This encryption is performed by use of the company’s current

11 Before encryption the checksum is complemented, see Section 6.2
Guidelines and instructions on security for electronic data interchange (EDI)

Version 2.0 EN 2011-06-23

signature key (private key) linked to the signature certificate. The encrypted checksum is the signature of the electronic document.

In order for the recipient to uniquely identify the certificate used, a reference shall be stored in the AUTACK message, with the certificate serial number (serialNumber) and a reference to the certificate authority (authorityKeyIdentifier[keyIdentifier]), see Appendix A.

The serialNumber and the authorityKeyIdentifier[keyIdentifier] of the certificate shall be stored in Base64 format in the certificate reference and key name data elements of the AUTACK message, see Appendix C.

6.1.2 Verifying a signature for an electronic document (from Swedish Customs)

The EDIFACT interchange consists of EDIFACT messages for the electronic documents included and an AUTACK message for the security information.

The public key of the sender is obtained from the sender’s (Swedish Customs’) certificate. The certificate is published by Swedish Customs, but is not included in the EDIFACT transmission. More than one certificate can be valid at the same time, for example in connection with replacement of a certificate. To determine which certificate has been used, the data elements key name and certificate reference from the AUTACK message must be used, see the SCTS-SC technical specification.

The electronic signature is obtained from the AUTACK message. Through the public key of the sender and the algorithm for electronic signatures in accordance with Section 6.2, the signature received is decrypted and the checksum\(^{12}\) is obtained (checksum A in the figure). A new checksum\(^ {13}\) is calculated for the received EDIFACT message (checksum B in the figure). The calculation is made in the same way as when a message is signed. After that, the

\(^{12}\) The complemented checksum, see Section 6.2

\(^{13}\) Checksum is complemented according to Section 6.2 before comparison is made
checksums A and B are compared and they should be identical to confirm that the signature is correct. The signature verification also includes generally recognised checks that the certificate is correct, i.e. check against lists of revoked certificates, check of the period of validity, check of root certificate including certificate chains, etc.

If the signature is incorrect, an error message is sent to Swedish Customs in accordance with current regulation.

6.2 Algorithms for checksum and electronic signature

<table>
<thead>
<tr>
<th>Checksum</th>
<th>SHA-256 shall be used as checksum algorithm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic signature</td>
<td>RSA shall be used as encryption/decryption algorithm for electronic signature, see RFC 3447, RSASSA-PKCS1-v1_5. Key length for RSA keys shall be in accordance with Appendix A.</td>
</tr>
</tbody>
</table>

Before the checksum is encrypted, it is supplemented with data on checksum algorithm and padding bytes to achieve the same length as the encryption key. *Note that this functionality usually is included in the standard software functions used for signing.*

6.3 Important to remember when using binary numbers

Storage in the data element ‘Key name’ in AUTACK

The certificate field `authorityKeyIdentifier[keyIdentifier]`, containing verification data used to identify the issuer certificate of the certificate authority (Swedish Customs), is stored in the data element `key name` in AUTACK, see Appendix A and the SCTS-SC technical specification. Before the data is stored, it has to be Base64 encoded, see Appendix C.

Storage in the data element ‘Certificate reference’ in AUTACK

The certificate field `serialNumber`, containing the certificate serial number, is stored in the data element `certificate reference` in AUTACK, see Appendix A and the SCTS-SC technical specification. Before the data is stored, it has to be Base64 encoded, see Appendix C.

Storage in the data element ‘Validation value’ in AUTACK

The calculated checksum and the electronic signature are stored in the data element `validation value` in AUTACK, see Appendix A and the SCTS-SC technical specification. Before the data is stored, the values have to be converted into hexadecimal code, see Appendix C.
Byte order in API calls of security functions

When making the technical implementation of the security concept, it is important to pay attention to the fact that different computer environments (Windows, Java etc.), may require different byte order for binary numbers in API calls of security functions (big endian or little endian).
7 Appendix A: Certificates – a technical description

7.1 Certificate Hierarchy
Swedish Customs PKI-based security concept for EDI has a certificate hierarchy of three levels.

On the lowest level is the signature certificates used for secure electronic data interchange (EDI) by companies and Swedish Customs. These signature certificates are signed by intermediate CA certificates.

On the intermediate level there are intermediate CA certificates with a maximum period of validity of 10 years, signed by the root certificate. Two types of intermediate CA certificates are used, one for signing company’s signature certificates and the other for signing Swedish Customs own signature certificates.

At the top level is Swedish Customs root certificate with a maximum period of validity of 20 years, used only for the issuing of intermediate CA certificates.

Root- and intermediate CA certificates are published on www.tullverket.se.
7.2 Root certificate

Key length and validity period
RSA-key with a length of 2048 bits.
Period of validity: 20 years.

Certificate fields

<table>
<thead>
<tr>
<th>Certificate fields</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>X.509 version 3 (value = 2)</td>
</tr>
<tr>
<td>serialNumber</td>
<td>Unique number for each certificate issued by the CA (Issuer)</td>
</tr>
<tr>
<td>signatureAlgorithm</td>
<td>sha1WithRSAEncryption</td>
</tr>
<tr>
<td>issuer</td>
<td>Issuer. For the root certificate, issuer and subject are the same</td>
</tr>
<tr>
<td>validity</td>
<td>See RFC 5280</td>
</tr>
<tr>
<td>subject</td>
<td>Organisation for which the certificate is issued.</td>
</tr>
<tr>
<td></td>
<td>C = SE, O = Tullverket, OU = Swedish Customs, OU = Root Certificate Authority,</td>
</tr>
<tr>
<td></td>
<td>SERIALNUMBER = SE2021000969, CN = Swedish Customs Public Root CA 1.0</td>
</tr>
<tr>
<td>subjectPublicKeyInfo</td>
<td>Signature algorithm and public key encoded according to RFC 5280</td>
</tr>
<tr>
<td>authorityKeyIdentifier</td>
<td>non-critical, see Section 7.5 and RFC 5280</td>
</tr>
<tr>
<td>subjectKeyIdentifier</td>
<td>non-critical, see RFC 5280</td>
</tr>
<tr>
<td>keyUsage</td>
<td>critical. The following bits must be set: keyCertSign, cRLSign</td>
</tr>
<tr>
<td>basicConstraints</td>
<td>critical. The field has two subfields: CA= TRUE; pathLenConstraint not specified</td>
</tr>
</tbody>
</table>
7.3 CA certificate

Key length and validity period
RSA-key with a length of 2048 bits.
Period of validity: 10 years.

Certificate fields

<table>
<thead>
<tr>
<th>Certificate fields</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>X.509 version 3 (value = 2)</td>
</tr>
<tr>
<td>serialNumber</td>
<td>Unique number for each certificate issued by the CA (Issuer)</td>
</tr>
<tr>
<td>signatureAlgorithm</td>
<td>sha1WithRSAEncryption</td>
</tr>
<tr>
<td>issuer</td>
<td>Issuer is the same as subject in the root certificate</td>
</tr>
<tr>
<td>validity</td>
<td>See RFC 5280</td>
</tr>
<tr>
<td>subject</td>
<td>Organisation for which the certificate is issued.</td>
</tr>
<tr>
<td></td>
<td>Used for signing companies signature certificates: C = SE, O = Tullverket, OU = Swedish Customs, OU = Public Intermediate Certificate Authority, OU = Only for authorized use, SERIALNUMBER = SE2021000969, CN = Swedish Customs Public CA 1.0</td>
</tr>
<tr>
<td></td>
<td>Used for signing the Swedish Custom’s signature certificates: C = SE, O = Tullverket, OU = Swedish Customs, OU = Internal Intermediate Certificate Authority, OU = Only for authorized use, SERIALNUMBER = SE2021000969, CN = Swedish Customs Internal CA 1.0</td>
</tr>
<tr>
<td>subjectPublicKeyInfo</td>
<td>Signature algorithm and public key encoded according to RFC 5280</td>
</tr>
<tr>
<td>authorityKeyIdentifier</td>
<td>non-critical, see Section 7.5 and RFC 5280</td>
</tr>
<tr>
<td>subjectKeyIdentifier</td>
<td>non-critical, see RFC 5280</td>
</tr>
<tr>
<td>keyUsage</td>
<td>critical. The following bits must be set: keyCertSign, cRLSign</td>
</tr>
<tr>
<td>certificatePolicies</td>
<td>non-critical. OID which identify the certificate policy used for the certificate.</td>
</tr>
<tr>
<td>basicConstraints</td>
<td>critical. The field has two subfields: cA= TRUE; pathLenConstraint = 0</td>
</tr>
</tbody>
</table>
7.4 Signature certificate

Key length and validity period
RSA-key with a length of 2048 bits.
Period of validity: 14 month.

Certificate fields

<table>
<thead>
<tr>
<th>Certificate fields</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>X.509 version 3 (value = 2)</td>
</tr>
<tr>
<td>serialNumber</td>
<td>Unique number for each certificate issued by the CA (Issuer)</td>
</tr>
<tr>
<td>signatureAlgorithm</td>
<td>sha1WithRSAEncryption</td>
</tr>
<tr>
<td>issuer</td>
<td>Issuer is the same as subject in the intermediate CA certificate</td>
</tr>
<tr>
<td>validity</td>
<td>Se RFC 5280</td>
</tr>
<tr>
<td>subject</td>
<td>Organisation for which the certificate is issued.</td>
</tr>
<tr>
<td></td>
<td>Example for signature certificate for a company: C = SE, O = Example import and export, OU = IT department, SERIALNUMBER = SE1122334455, CN = Eximpexp</td>
</tr>
<tr>
<td></td>
<td>Example for signature certificate for Swedish Customs: SERIALNUMBER=SE2021000969, O=Tullverket, C=SE, OU=Swedish Customs, CN=Tullverket EDI</td>
</tr>
<tr>
<td>subjectPublicKeyInfo</td>
<td>Signature algorithm and public key encoded according to RFC 5280</td>
</tr>
<tr>
<td>authorityKeyIdentifier</td>
<td>non-critical, see Section 7.5 and RFC 5280</td>
</tr>
<tr>
<td>subjectKeyIdentifier</td>
<td>non-critical, see RFC 5280</td>
</tr>
<tr>
<td>keyUsage</td>
<td>critical. The following bit must be set: nonRepudiation</td>
</tr>
<tr>
<td>certificatePolicies</td>
<td>non-critical. OID which identify the certificate policy used for the certificate.</td>
</tr>
<tr>
<td>basicConstraints</td>
<td>critical. The field has two subfields: cA= FALSE; pathLenConstraint ej angivet</td>
</tr>
<tr>
<td>cRLDistributionPoints</td>
<td>non-critical. This field contains a pointer to the CRL.</td>
</tr>
</tbody>
</table>
7.5 authorityKeyIdentifier

One step in the control of a document's signature is to verify that the certificate used to create the signature is correct. This also includes validation of the certification path above the signature certificate up to the root certificate.

The certificate field authorityKeyIdentifier is used to uniquely identify the parent certificate used to sign a certificate. This field is divided into the following subfields (see RFC 5280):

<table>
<thead>
<tr>
<th>Subfield</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>keyIdentifier</td>
<td>Contains a checksum of the parent certificate's public key.</td>
</tr>
<tr>
<td>authorityCertIssuer</td>
<td>Issuer of the parent certificate</td>
</tr>
<tr>
<td>authorityCertSerialNumber</td>
<td>Certificate serial number for parent certificate</td>
</tr>
</tbody>
</table>

The subfield keyIdentifier is used for signature certificates issued by Swedish Customs.

To verify the signature, the recipient must have access to the sender's signature certificate. In the Swedish Customs' implementation of the EDIFACT format, no signature certificate is included in the AUTACK message (see Section 6) but must be downloaded. However, the AUTACK message includes certificate serial number, serialNumber, and reference to the CA, authorityKeyIdentifier [keyIdentifier]. The fields serialNumber and authorityKeyIdentifier [keyIdentifier] uniquely identify the certificate used to sign the document which is necessarily to select the correct certificate.

Root certificate, intermediate CA certificates and Customs’ signature certificate can be downloaded from Swedish Customs' website, www.tullverket.se.
Appendix B: CSR file – description and examples

The purpose of the examples below is to show some different ways to create a CSR. The section is at a relatively deep technical level and is therefore primarily targeted at technical professionals who will implement the management of CSR files in its system. Information in the section should be seen as guidance and not as precise instructions for the implementation.

In the examples the following company information are used:

<table>
<thead>
<tr>
<th>countryName</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>organizationName</td>
<td>Example import and export</td>
</tr>
<tr>
<td>organizationalUnitName</td>
<td>IT-department</td>
</tr>
<tr>
<td>serialNumber</td>
<td>SE112334455</td>
</tr>
<tr>
<td>commonName</td>
<td>Eximpexp</td>
</tr>
</tbody>
</table>

The CSR is a text file. The following is an example, created from the information above:

```
-----BEGIN CERTIFICATE REQUEST-----
MIICuDCCaaACAwQcgcEEMAwgGA1UEBhMCU1UxIjAgBgNVBAoTGUV4YW1wbGUyMjAAlDNB
b3J0IGFuZCBleHBvcnQgY2FsaW5lIGJlZiBleHBvcnQgY2FsaW5lIEJsb2dyYW50IENv
bGVzaWZpb24gQ2xhc3QgQ2xhc3RlZCB0byB0aGlzIENlbGFuZ3VsZWFzIGRldmVsb3Bfd
Xmcm90aW1vdW50cyBScGFpbnRpdHkgb3JnZM13MjEuY29tMEQwggEiMA0GCSqGSIb3DQB
AQUAA4IBDwAwggEKAoIBAQD5iVkD/dcGo3Vy9tLh74FHk4e400+2wma8CJ+0dmT2k
FsHzuwFwnUD8R433Jemmxts=3agk3gbrw8YV74xtrM1dK6N3UADYOPwJ87o07UGw
JSp6G19i1IK/srPDbiPvJC/NSg9KGM54HuI3zLGN8FPGKPDpqN9rzdx5A87rK70j
ANZPemGydaRtNbSFfGn2cjvK7zt/XzvOKTgGaB9y9ySmNaWuW41+2noy9fjk3jcn7d
bxHbwZMzyfEPEO+Hxux88SzxtodSJDzLRBrhYM/bF0oTWF7AnrxXxf13YzvC1WT5
B8y1KmZl/MP4csQ+nnleUqg91ILR9tt+EA+x5dtQStzAgMBAAAgADANBggkqhkiG
9w0BAQFAAACCAQAwGgQv8ToG+/NhKAOyoR3ozq9YQTfYKgc5Kztje1DdovG
RbSyfKlsO5vU7Ve3Vde30y3fArna+/lmavLkVuVnhjEGAlaC8sAb7c7EwauU
NquTAKKvHvTB/F3/XvHpNZJZzKEQ/yrytuy6kdiz2yvORLejwOATzAOjudPlz3y/3
kbQf3/YafeJMJ6JMyHHzMF5AS8vLFE7PqjjjLrSnoIFr/TKNE801HxvKvh
StgIvJFCJGsao3Kw1H7EdxLECkaBN09k/3oDUGxXwUmtUQ0qVhnp4zj9EKCp6m
FJ2qbg9JtVvU7+wMsf56F0dJE11r/q8KV/RWaw==
-----END CERTIFICATE REQUEST-----
```

The contact person at the company shall copy the entire plain text from the CSR file into an email message and send it to edi.certifikat@tullverket.se. Name and EORI number shall be specified in the email subject line.

The content of the CSR file in plain text shall be copied into a document with the title “Ordering of signature certificates” and the company name and EORI-number shall be specified. A printout of the document shall be signed by the contact person (including name spelled out) and sent by postal mail to:

Swedish Customs, IT department
EDI Certificate
Aurorum 3
SE-977 75 Luleå
SWEDEN

The signed letter is necessary to legally associate the contact person to the issued signature certificate.
8.1 OpenSSL

OpenSSL is available for many different computing environments and is open source. Documentation of OpenSSL can be downloaded from www.openssl.org.

Command line request to create a CSR:

```
openssl req -newkey rsa:2048 -keyout example.key -out example.csr
-subj "/countryName=SE/organizationName=Example import and export
/organizationalUnitName=IT department/serialNumber=SE112234455/
commonName=Eximpexp"
```

When you run this command you will be asked to enter a password to protect the private key. In the command example above, the CSR is stored in the file `example.csr` and the private key in `example.key`.

OpenSSL can also be used to display the contents of a CSR:

```
openssl req -text -noout -in example.csr
```

Note that this presentation has limitations that make it hard to detect some errors in the subject field of the certificate.

Another utility in the openssl package is `asn1parse`, which can be used to show in detail the contents of the CSR. Through this, errors can be detected that are not detected via `req`.

```
openssl asn1parse -in example.csr.
```

Via "asn1parse" it is possible to check that the `serialNumber` is a separate object, see `OBJECT` in the example below.

The file `exemple.csr` is a correct CSR while the CSR `incorrect.csr` contains errors. The program `req` will however present the same content of `subject` for both these files. When `asn1parse` is used, the error in `incorrect.csr` can be identified, see below.
Guidelines and instructions on security for electronic data interchange (EDI)

Version 2.0 EN 2011-06-23 Sid 33 (40)

Output based on a correct CSR:

```bash
openssl asn1parse -in example.csr
  0:d=0  hl=4 l= 696 cons: SEQUENCE
    4:d=1  hl=4 l= 416 cons: SEQUENCE
      8:d=2  hl=2 l=   1 prim: INTEGER :00
     11:d=2  hl=2 l= 115 cons: SEQUENCE
       13:d=3  hl=2 l=  11 cons: SET
       15:d=4  hl=2 l=   9 cons: SEQUENCE
         17:d=5  hl=2 l=   3 prim: OBJECT :countryName
         22:d=5  hl=2 l=   2 prim: PRINTABLESTRING :SE
     26:d=3  hl=2 l=  34 cons: SET
     28:d=4  hl=2 l=  32 cons: SEQUENCE
       30:d=5  hl=2 l=   3 prim: OBJECT :organizationName
       35:d=5  hl=2 l=  25 prim: PRINTABLESTRING :Example import and export
     62:d=3  hl=2 l=  22 cons: SET
     64:d=4  hl=2 l=  20 cons: SEQUENCE
       66:d=5  hl=2 l=   3 prim: OBJECT :organizationalUnitName
       71:d=5  hl=2 l=  13 prim: PRINTABLESTRING :IT department
     86:d=3  hl=2 l=  21 cons: SET
     88:d=4  hl=2 l=  19 cons: SEQUENCE
      90:d=5  hl=2 l=   3 prim: OBJECT :serialNumber
     95:d=5  hl=2 l=  12 prim: PRINTABLESTRING :SE1122334455
    109:d=3  hl=2 l=  17 cons: SET
    111:d=4  hl=2 l=  15 cons: SEQUENCE
      113:d=5  hl=2 l=   3 prim: OBJECT :commonName
     118:d=5  hl=2 l=  15 prim: PRINTABLESTRING :Eximpexp
    129:d=2  hl=4 l= 290 cons: SEQUENCE
    132:d=3  hl=2 l=  13 cons: SEQUENCE
      134:d=4  hl=2 l=   9 prim: OBJECT :rsaEncryption
     145:d=4  hl=2 l=   0 prim: NULL
     147:d=3  hl=4 l= 271 cons: SEQUENCE
      422:d=2  hl=2 l=  13 prim: OBJECT :sha1WithRSAEncryption
     424:d=1  hl=2 l=  13 cons: SEQUENCE
      426:d=2  hl=2 l=   9 prim: OBJECT :sha1WithRSAEncryption
     437:d=2  hl=2 l=   0 prim: NULL
     439:d=1  hl=4 l= 257 cons: SEQUENCE
```

Output based on an erroneous CSR:

```bash
openssl asn1parse -in incorrect.csr
  0:d=0  hl=4 l= 699 cons: SEQUENCE
    4:d=1  hl=4 l= 419 cons: SEQUENCE
      8:d=2  hl=2 l=   1 prim: INTEGER :00
     11:d=2  hl=2 l= 118 cons: SEQUENCE
     13:d=3  hl=2 l=  11 cons: SET
     15:d=4  hl=2 l=   9 cons: SEQUENCE
      17:d=5  hl=2 l=   3 prim: OBJECT :countryName
      22:d=5  hl=2 l=   2 prim: PRINTABLESTRING :SE
     26:d=3  hl=2 l=  34 cons: SET
     28:d=4  hl=2 l=  32 cons: SEQUENCE
      30:d=5  hl=2 l=   3 prim: OBJECT :organizationName
      35:d=5  hl=2 l=  25 prim: PRINTABLESTRING :Example import and export
```
Guidelines and instructions on security for electronic data interchange (EDI)

Sid 34 (40) Version 2.0 EN 2011-06-23

62:d=3 h1=2 l= 48 cons: SET
64:d=4 h1=2 l= 46 cons: SEQUENCE
66:d=5 h1=2 l= 3 prim: OBJECT :organizationalUnitName

71:d=5 h1=2 l= 39 prim: PRINTABLESTRING :IT
department/serialNumber=SE1122334455

112:d=3 h1=2 l= 17 cons: SET
114:d=4 h1=2 l= 15 cons: SEQUENCE
116:d=5 h1=2 l= 3 prim: OBJECT :commonName
121:d=5 h1=2 l= 8 prim: PRINTABLESTRING :Eximpexp
131:d=2 h1=4 l= 290 cons: SEQUENCE
135:d=3 h1=2 l= 13 cons: SEQUENCE
137:d=4 h1=2 l= 9 prim: OBJECT :rsaEncryption
148:d=4 h1=2 l= 0 prim: NULL
150:d=3 h1=4 l= 271 prim: BIT STRING
425:d=2 h1=2 l= 0 cons: cont [0]
427:d=1 h1=2 l= 13 cons: SEQUENCE
429:d=2 h1=2 l= 9 prim: OBJECT :sha1WithRSAEncryption
440:d=2 h1=2 l= 0 prim: NULL
442:d=1 h1=4 l= 257 prim: BIT STRING
8.2 Windows certreq

Create the configuration file (policy file) `example.inf` with contents as the following example:

```plaintext
[NewRequest]
KeyLength=2048
RequestType=PKCS10
Subject="C=SE, O=Example import and export, OU=IT department, SERIALNUMBER=SE1122334455, CN=Eximpexp"
Exportable = TRUE ; TRUE = Private key is exportable
SMIME = FALSE
```

Then run the following command to create a key pair and a CSR:

```
certreq -New example.inf example.csr
```


The command `certutil` can be used to check the CSR:

```
certutil -dump example.csr
```

Example of results from `certutil`:

```
PKCS10 Certificate Request:
Version: 1
Subject:
  C=SE
  O=Example import and export
  OU=IT department
  SERIALNUMBER=SE1122334455
  CN=Eximpexp
Public Key Algorithm:
  Algorithm ObjectId: 1.2.840.113549.1.1.1 RSA
  Algorithm Parameters:
  05 00
Public Key Length: 2048 bits
Public Key: UnusedBits = 0
  0000 30 82 01 0a 02 82 01 01 00 f5 36 cf c3 e4 a9 27
  0010 91 5b 4c 72 a4 45 81 39 ac 9c da f8 b4 93 af 6c
```
8.3 Java

Java keytool is available for many different computing environments.
Documentation of Java keytool can be downloaded from:
http://download.oracle.com/javase/6/docs/technotes/tools/index.html#security

Run the following command to create a key pair:

```
keytool -genkeypair -alias SE1122334455 -keyalg RSA -keystore keystore.jks -keysize 2048 -dname "C=SE, O=Example import and export, OU=IT department, serialNumber=SE1122334455, CN=Eximpexp"
```

Run the following command to create a CSR:

```
keytool -certreq -alias SE1122334455 -keystore keystore.jks -file example.csr
```

Check of CSR can be made by e.g. openssl req, openssl asn1parse or Windows cerutil –dump (see 8.1 and 8.2).
9 Appendix C: Hexadecimal and Base64 encoding

9.1 Hexadecimal encoding

Hexadecimal encoding (also called Base16-encoding) is used to store binary data as alphanumeric characters.

The data is divided into groups of 4 bits. Each 4-bit group is converted to an alphanumeric character (0-9, A, B, C, D, E or F), representing the hexadecimal value. Each octet is thus represented by two alphanumeric characters.

In the EDIFACT encoding format, the ‘Filterfunction 0505’ is set to 2 to indicate that a hexadecimal filter is used for encoding.

Hexadecimal encoding is described in Section 8 of RFC 4648, “The Base16, Base32, and Base64 Data Encodings”.

Example

The decimal number 31,420 corresponds to the binary 16-bit number 0111 1010 1011 1100. In hexadecimal encoding, this is represented by the four alphanumeric characters 7 A B C.

9.2 Base64 encoding

Base64 encoding is used to store binary data as alphanumeric characters. The Base64 encoding results in fewer alphanumeric characters than the hexadecimal encoding and is used instead of hexadecimal encoding when compression of the data is desired to save space.

In the EDIFACT encoding format, the ‘Filterfunction 0505’ is set to 7 to indicate that Base64 encoding has been used.

Base 64 encoding is described in Section 4 of RFC 4648, “The Base16, Base32, and Base64 Data Encodings”.

Example

Firstly, the data is divided into groups of 24 bits (3 octets). If the binary number cannot be evenly divided into 24-bit groups, additional characters (padding) have to be added at the end.

The 24-bit groups are then divided into 4 x 6 bits. Each 6-bit group is assigned a character based on the table below.
In the following example, we use a 160-bit binary number:

In the example, the colon (:) is used only to improve the readability.

Divided into groups of 3*8 = 24 bits:

00:12:87 = 0000 0000 0001 0010 1000 0111
EC:A7:BD = 1110 1100 1010 0111 1011 1101
25:20:2D = 0010 0101 0010 0000 0010 1101
6D:2B:F5 = 0110 1101 0010 1011 1111 0101
5B:3D:1E = 0101 1011 0011 1101 0001 1110
D7:86:07 = 1101 0111 1000 0110 0000 0111
BB:67:00 = 1011 1011 0110 1111 0000 0000

where the last 8 bits (00) in the last group are padding.

Regrouping into groups of 4*6 = 24 bits represented as hexadecimal numbers:

000000 000001 001010 000111 = 00:01:0A:07
111101 001010 011110 111101 = 3B:0A:1E:3D
001001 010010 000000 101101 = 09:12:00:2D
010110 100010 101110 110010 = 1B:12:2F:35
010100 110010 110100 011110 = 16:33:34:1E
110101 111000 011000 000111 = 35:38:18:07
101110 110110 011100 000000 = 2E:36:1C:00

Conversion of the 6-bit hexadecimal numbers into alphanumeric characters in accordance with the table:
00:01:0A:07 = ABKH
3B:0A:1E:3D = 7Ke9
09:12:00:2D = JSAt
1B:12:2F:35 = bSv1
16:33:34:1E = 9e0e
35:38:18:07 = 14YH
2E:36:1C:00 = u2c=

The result from the example is the following 28-character alphanumeric number:
ABK7Ke9JSAtbSv1Wz0e14YHu2c=
(“=” in the end indicates that there is a padding character included).